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ABSTRACT 

The uncertainty associated with a least-squares fitted polynomial is a 
function of the standard deviation of the data noise, the correlation of the data 
noise, the degrees of freedom of the polynomial, and the number of data 
points. The standard deviation and the rms standard deviation of the poly- 
nomial are therefore better measures of data quality and the information con- 
tained in the datathan the commonly used residuals from a least-square fitted 
polynomial. 

The standard deviation q i  and the rms  standard deviation 5 of least- 
squares fitted polynomials are analyzed in this paper. The general equations 
derived a re  demonstrated on several Apollo tracking problems: 

It is shown that Tdoes not improve for higher sampling rates of 
angular data than 2 o r  5 per second, for narrow and wide bandwidth 
setting of the angular servoloops, respectively. (Apollo GO, NO-GO 
decision.) 

The effect of negative correlation of measurement e r r o r s  is ana- 
lyzed. The effect of phase noise in range rate data is reduced by a 
factor fi due to the negative correlation of -1/2 between adjacent 
measurement points. 

The effect of random-walk phase noise on the range rate data is 
shown to be proportional to the two-way propagation time of the 
signal. 

The maximum e r ro r  in a least-squares fittedpolynomial is also analyzed. 
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EFFECTS OF CORRELATED NOISE WITH APPLICATIONS 
TO APOLLO TRACKING PROBLEMS 

bY 
B. Kruger 

Goddard Space Flight Center 

INTRODUCTION 

A frequently used method for evaluation of tracking data is to f i t  a polynomial yj 

of degree k - 1, Le., with k degrees of freedom, to the N measured data points yi in the least-squares 
sense. The residuals vi 

are  then formed and the variance u', 

is used as a measure of the quality of the data. 

The basic shortcoming of this method is that C T ~  does not reflect the amount of information con- 
tained in the data. Due to the noise on the data yi the constants a, in Yi can only be determined 
with limited accuracy; a standard deviation can be associated with each a,,. Taking the cor- 
relation between the coefficients into account, b e  can find the standard deviation r)i for the poly- 
nomial Vi at point i .  It is suggested that qi is a better measure for the data quality than u ~ .  The 
variance ~f does not reflect the correlation of the data noise nor the number of data points available. 
On the other hand, qi is a function of the data noise correlation and the number of data points avail- 
able. In addition, qi reflects the increased uncertainty due to an increase in k . 

The standard deviation qi of the polynomial Ti and especially the root mean square (rms) 5 
of q i ,  as defined in the section on data with uncorrelated noise, a r e  therefore better and 
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more accurate measures of data quality and the information contained in the data than U €  

alone. 

In this paper the relations between the standard deviations of the polynomial a re  derived for 
correlated and uncorrelated data noise. It is shown that T~ and 7 a re  always proportional to me and 
that the proportional factors are  functions of the data noise correlation, the number of data points, 
and the number of degrees of freedom of the polynomial fit. 

The general equations derived are  demonstrated on several Apollo tracking problems. 

THE LEAST-SQUARES FIT 

Let us assume that we have N observed data points y i  at equally spaced intervals. The inter- 
vals a r e  normalized to length 1 without loss of generality. A polynomial 

- 
yi = a. + al  i + az i2 + . . . + ak-l ik-' 

is fitted to the data by the least-squares method. The residuals v i  are given by 

- 
vi  = Y i  - Yl 

The sum of the residuals squared is minimized by varying the coefficients av of yi. From 

v; = 0 
i = l  

we obtain 

Yi a. z i o  + al z i t . . . + ak-l Z ik-' = Z io  

a o Z i  + a l Z i 2  + .  . +ak- l  X i k  = Z i y i  

(5) 

where all sums are taken from 1 to N .  From this set of linear equations the coefficients a, may 
be solved for and inserted in Equation 4. It is shown in Appendix A that the result may conveniently 
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be written in deterininat form: 

j=N 

1 A,, A, A, * &-, 

i A, A, A, * 4, 

iz A, A, A4 - - Akt, 

where 

and 

I A l  = 

For brevity we introduce the notation* 

Yj t 

N 

A ~ =  i v  

i = l  

0 for the larger determinant so that 

N 

yi =-1 I A l  c j= l  I p  jJ yj 9 (10) 

which is the basic equation that will  be used for  the analysis of the standard deviation rli of the 
polynomial Ti. 

o i  
*Note that l i  A I is not a linear operator. 
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DATA WITH UNCORRELATED NOISE 

Basic Relations and Definitions 

The measurements y i  may be written 

y i  = Yi + E i  , 

where 

Y i  = the true value 

e i  = measurement error.  

The e i  are assumed to be stationary stochastic variables with zero mean and standard devia- 
tion C T ~ .  The er ror  AYi due to the measurement e r ro r s  e i  is obtained by substituting Equation 11 
in Equation 10: 

For uncorrelated noise we have 

b(ClE1 + C 2 E 2 + .  . . t C N E N ) 1 2 = ( C ; + C ; t  * * *c+: 9 

and hence 

where 

vi = standard deviation of the least-squares fitted polynomial Yi at point i .  

In Appendix B, Equation 3, it is shown that 

and thus 
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It is suitable to normalize the measuring interval to unit length by dividing i by N. Furthermore, 
T~ is symmetric around i/N = 1/2. A new variable u is therefore introduced: 

i l + u  
N 2 '  
-= -  

and it is shown in Appendix C that, with the approximation 

Equation 14  may be written 

where P, a re  the Legendre polynomials. The e r ror  introduced by the approximation 16 is of mag- 
nitude N- ,  (see Appendix C) and vanishes, therefore, for large N. 

In Figure 1 the normalized standard deviation qni for yi ,  

is shown graphically for values of k from 1 through6. We note that, for i /N = 0 or  i/n = 1, 

. -0  T n i l  '-N = 

This result is true for all k, which may be 
shown by expanding Equation 14 in powers of i : 

where A,, , A,,, etc., are the minors of I A l  . If 
i = 0 o r  i = N, 

i/N 

(19) 

Figure 1 -The standard deviation qi for least-square fit- 
ted polynomials & of degree k - 1.  The standard devia- 
tion of the data noise i s  uE. N = number of data points. 
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It is shown in Appendix D, Equation D11, that 

and thus 

Sometimes it is necessary to use Yi for 
prediction outside the interval of observation. 
An example is the prediction of yearly oscilla- 
tor drift based on one or  two months of actual 
observation. Figure 2 shows the rapid increase 
of T~ outside the interval of observation. 

The Root Mean Square 
Standard Deviation 

The standard deviation vi for the least- 
squares fitted polynomial Yi varies with i, as 
can be seen from Figure 1. It is therefore de- 
sirable to define an average standard deviation. 
We choose the root mean square (rms) stand- 
ard deviation defined by 

- 1  T 2  = -  
N 

or, using Equation 14, 

loo, ooa 

10,000 

1 OW 

I: 
F1.W 

100 

!O 

1 

N 

Figure 2-The standard deviation T~ of the least-squares 
fitted polynomial ri increases rapidly, i f  ri i s  used for 
prediction outside the interval of N observed data points. 

N 

From Appendix B, Equation B4, we obtain 

This equation demonstrates a simple relationship between .1 and u e .  For k = 1 we obtain the well- 
known equation for the standard deviation of a time invariant quantity which is measured N times. 
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Because N 2 k we have 

For the normalized rms standard deviation 

we obtain 

or 

Note that the Equations 23 and 25 are exact; and no assumptions have been made about the size of 
N .  Figure 3 shows the relation between and " i  for k = 3 and k = 6. 

I 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 .o 

N 

Figure 3-The relationship between the normalized standard deviation (Ti /uE) and the normalized rms 
standard deviation (.?/a,) fi for least-squares fitted polynomials with k degrees of freedom. 
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DATA WITH CORRELATED NOISE 

Basic Relations 

If the correlation coefficient between the noise of measurements y t  and y t + ,  is p,, then we 
have the basic relation for a stationary process: 

b(C1€ ,  t C 2 E Z  t . . . c , € , , 1 2  = [E c; t 2 P l  c; ci+l f . . . 
1 

where me is the standard deviation of e r rors  in the measured values y i  . From Equation 12 for the 
e r ror  0Gi in the least-squares fitted polynomial yi , 

we thus find the standard deviation qi  for yi to be 

For the r ot me 

+ 2P,  

n square st ndard deviation 5 

we obtain 
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hi Appefidix D it is show- that this equation may be simplified to 

where g(k) is a function of k alone. The normalized root mean square standard deviation 

is then 

This is a powerful equation; the use of it will be demonstrated in the following subsections. 

Positive Correlation from System Transfer Functions 

The transfer functions of a system can in most cases be described by an equivalent electronic 
circuit. For instance, the transfer function of an antenna servo is a low-pass filter. If white noise 
is applied to a low-pass filter, the noise at the output terminals will  be positively correlated. In 
this section the effects of positive correlation from maximum-flat (Butterworth) filters will  be 
analyzed. The autocorrelation functions for the noise at the filter output a re  summarized in Ref- 
erence 1. Figure 4 shows the autocorrelation function for a single-pole, a double-pole, and an 
"ideal" (infinitely many poles) filter as well as the corresponding electronics circuits. Maximum- 
flat filters are chosen because they commonly occur, they describe most systems adequately, and 
their mathematical treatment is relatively simple. 

The autocorrelation function R ( 7 )  of the output noise (for white input noise) for a single-pole 
filter (see References 1 or  2) is 

-",I1 R ( 7 )  = e 

where w c  = 3-db angular cutoff frequency of the filter. If the sampling interval is h, then 

and 



1.5 

1 .o  

i- 

PI 
v 

0.5 

( 

h .. . -. -. 
IDEAL FILTER 

/ 

/ DOUBLE-POLE FILTER 

5 2.0 2.5 

Figure 4-Electronic single- and double-pole filters. Normalized autocorrelation functions R(T) 
of white noise passing through maximum-flat filters. 

when p, = wch, and thus 

But << 1 for large N, so that 

For the sum Zip,  we obtain 
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The sums Zi3pi, etc., may be evaluated in a similar fashion. 

Inserting these results in Equation 29 yields 

and for large N 

o r  

-ac h where p1 = e 

correlated data noise. 
and F0 stands for the rms standard deviation of the fitted polynomial y i  for un- 

- i o c h  We see from Equation 38 that the effect of positive correlation e is to multiply the rms 
standard deviation obtained for uncorrelated data by the factor 

/- 
A maximum-flat (Butterworth) two-pole filter has the normalized autocorrelation function 

(Reference 1). 

R ( r )  = 
77 

cos - 
4 

(39) 

and thus 



where p, = w C h / J z .  Performing the summation we obtain for large N 

so that 

s i n  h ,B2 + s i n  pZ 
cos h p, - cos p, Pi = 

1 

Thus 

for a two-pole filter and for large N .  

For an ideal filter, i.e., one with infinitely many poles, we obtain from References 1 and 2 

and hence 

s i n  ip, 
p i = - ,  

i P, 

where p, = L L I ~  - h. For large N we obtain from Reference 3, page 96 

Also 

12 
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jP provided that 1 - e # 0. We thus obtain from Equation 29 

for an ideal low-pass filter and large N .  

The Effect of Sampling Rate on Positively Correlated Data 

An important problem is to find the maximum meaningful sampling rate if  the total time of 
observation T is given and the data is positively correlated by a maximum-flat filter as described 
in the preceding subsection. 

For a single-pole filter, Equation 38 may be written 

The total time of observation is T and the sampling interval is therefore 

T h = -  
N 

and thus 

T 
c N  -u - 

P1 = e 

or 

Insertion in Equation 39 yields 

(48) 

(49) 



From this equation we see that 
little is gained by using a larger number of samples than Nmax: 

does not improve appreciably if ( w c T m )  < 1. In other words, 

o r  a sampling rate N/"T larger than 

'nax - = w  
T C  

Equation 37 may also be written 

and, for N - m ,  

(53) 

where 

ue = standard deviation of the noise of the data 

k = degree of freedom of the least-squares fitted polynomial Ti 
wC = 3-db angular cutoff frequency of the single pole filter 

T = total time of observation. 

Figure 5 shows a comparison between 7j for correlated and uncorrelated noise with T = 60 sec 
and wC = 3 rad/sec. This figure clearly demonstrates that little is gained by exceeding N , . ~ .  It is 
of interest to note that p1 = l / e  0.37 for N = N ~ ~ ~ .  

From Equation 23 we see that the same 7j is obtained for correlated data with N = m and un- 
correlated data with N = (1/2) Nmax.  

For a double-pole filter we obtain from Equations 28 and 41 

w T  
+ s i n C  s i n  h- U C  

k J Z N  J Z N  u$ 72 = - .  
N wCT wc 

C O S  h- - cos- 
f i N  J Z N  

1 4  



and, for N -00, 

(57) 

For the ideal low-pass filter we obtain, from 
Equation 46 for N- a, 

Figure 6 shows the comparison between? 
for uncorrelated noise and noise correlated by 
a single-pole filter, a double-pole filter, and 
an ideal filter. It is seen that the difference 
between a double-pole and an ideal filter is 
very small. It is therefore sufficient to cal- 
culate with a double-pole filter for practical 
purposes. 

Figure 7 and 8 show Tfor  single- and 
double-pole filters with T = 60 sec and wC as 
parameter. 

Example: What is the maximum meaning- 
ful sampling rate for angular data for Apollo 
tracking ships? The transfer function of the 
angle servos is approximated by a two-pole 
filter . 

Expanding Equation 56 into a ser ies  we 
find 

Somewhat arbitrarily we defined the maxi- 
mum meaningful sampling rate as the rate for 
which 7 is within 5 percent of its value for 
N = a. Thus 

0.20 

0. I5 

0.1c 

0.02 

( 

Figure 5-RMS standard deviation 7 of least-squares 
polynomial f i t s  for uncorrelated and correlated noise. 
The time T of observation i s  60 sec, and w c  = 3 rad/sec. 
The number of samples N i s  varied. 

Figure 6-Comparison of the effect of different filters on 
the rms standard deviation .I of least-squares fitted poly- 
nomials. White noise i s  applied to the filters. 
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I C  

0.4 

0.3 

0" 

0.2 

0.1 

0 

I ,PI =0.2 

/ l / p I = O . 4 /  

100 200 300 400 500 600 
N 

Figure 7-The effect of filter bandwidth of a single-pole 
filter on the rms standard deviation Tof  least-squares 
fitted polynomials. White noise i s  applied to the filter, 
and the time of observation T = 60 sec. 

0 200 400 600 
N 

Figure 8-The effect of filter bandwidth of a double-pole 
filter on the rms standard deviation 7 of least-squares 
fitted polynomials. White noise i s  applied to the filter, 
and the time of observation T = 60 sec. 

and 

The Angle Servo Bandwidth may be switched to either 1 Hz or  2.5 Hz (with gyro loop closed) ac- 
cording to Reference 4. We thus obtain from Equation 61 the maximum meaningful sampling rates 
as 2 and 5 samples per second respectively. 

Negative Correlation Range Rate Data 
A typical case of data with negatively correlated noise is range rate measurements in the non- 

destructive Doppler count mode (Reference 5). The Doppler frequency shift is continuously inte- 
grated by means of a counter, and the counter is read out at equal intervals T without destroying 
the information. If the information in the counter is z i, then the range rate R is 
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etc., where c 1  is a constmt. The dcminatir?g errors  in z .  a re  of two types: a rardol~?, zero-=em, 
and uncorrelated noise with constant standard deviation crN, and a zero-mean random-walk noise 
with standard deviation rRW which is proportional to the root of time t: 

URW c2  JT , 

where c2 is a constant. 

We will first consider the noise with standard deviation vN. As the noise is uncorrelated we 
obtain 

where 

rkN = the standard deviation of the range rate noise due to rN. 

The e r ro r s  in R l  and R ,  are  correlated because both contain the same e r ro r  from 2,. For this 
reason all adjacent measurements are correlated. Non-adjacent measurements, e.g., R and R3, 

a re  not correlated because they have no error  in common. 

From Equation 62 we obtain 

But we also have 

where p1 is the correlation coefficient between adjacent measurements. The results from Equa- 
tions 64 and 65 have to be identical for all N: 

N f 2(N - l ) p ,  = 1 . 



Hence 

1 
4=-- 2 

By putting R, = y i  we obtain the least-square polynomial Yi from Equation 10: 

and the normalized rms  standard deviation .I, of the polynomial is for large N ,  from Equation 29, I 

o r  

- k2 
N 

Tn=- 9 

which also may be written 

- k  
r )  =-u 

N h '  

It is interesting to compare this result for negatively correlated noise with Equation 23 for 
uncorrelated noise: 

We may thus write 
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The negative correlation pi  = - 1/2 thus re- 
duces the effect of the noise on the rms  stand- 
and deviation of yi by a factor a. 

The range rate data also gets an e r ror  
contribution from t h e random-walk phase 
noise. This contribution is for a coherent 
range rate system proportional to the square 
root of the propagationtime TP of the electro- 
magnetic wave going from the tracking station 
to the spacecraft and backagain. The standard 
deviation UkRW of the e r ror  in the R measure- 
ments, caused by random walk, is thus 

The normalized autocorrelation function for 
the range rate is shown inFigure9. If the pro- 
pagation time TP is p t x sampling intervals, 
where 0 < x < 1, then the correlation coefficients 
a r e  given by 

1 .a 

0.5 

- 
Z C  
ai 

-0.5 

-1.c 

T, = ( p + x )  h 

h = SAMPLING INTERVAL 
T, = TWO-WAY PROPAGATION TIME 

Figure 9-Normalized autocorrelation function R ( 7 )  for 
range rate measurements (two-way Doppler) contarnin- 
a t 4  with random-walk phase noise. 

1 - x  
p ! a = - -  2 

X 
Pp+l = - 2 ' 

and all other p = 0, as shown in Appendix E. Hence 

1 t 2 z p i  = 0 

and 

- 2 Z i p i  = p(1-x) + ( p t l )  x = TP , 

From Equation 28 we thus obtain 

(73) 
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With ukRw = c Z q ,  we obtain 

The rms  standard deviation of the least-squares fitted polynomial is thus proportional to the prop- 
agation time TP. The effects of the random-walk e r ror  a re  therefore negligible for near-earth 
missions but may be dominating for "Deep Space" missions and galactic probes. 

Negatively Correlated Data; Exponential Autocorrelation Function 

Assume that we have a normalized autocorrelation function 

If the sampling interval is h, then 

and 

where 

and thus 

- b I  pi = - pi4 
1 1 1 -  IPII (77) 

for large N in accordance with Equation 32. For the sum Zip, we obtain, from Equation 35 with N -  a, 

lPll 2 1 ipi = - ( 1  - I p 1 1 ) 2  - 

Insertion in Equation 29 yields, for large N,  

7, ' 
= P p l '  1 - lPll - 
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where no is the rms  standard deviation of yi for uncorrelated noise. The maximum amplitude for 

lP l l  is 

For this value we obtain from Equation 29: 

o r  

. 

Except for a constant multiplier, this equation is identical with Equation 69 for noise, with 
p1 = - 1/2 and all other p = 0. 

RELATED TOPICS 

Determination of the Standard Deviation of Noise of  Time-Varying Data 

Let Y be a time-varying quantity which is observed at equally spaced time intervals. Without 
loss of generality, we normalize the time interval to 1, and Y will have the value Y at time i . 
During the observation an e r ro r  E ;  is introduced so that the observed value y i  is 

y. = Y; + E; . (83) 

The e r ro r  
definition, 

is assumed to be a zero-mean stochastic variable with standard deviation cE. By 

when a least-squares polynomial yi of order k - 1 is fitted to the data, the residuals vi can be 
determined: 

vi  = y ;  - 5; (85) 

E ;  = v i  - (Y; - 7 ; )  . (8 6) 

and thus 
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The conditions for a least-squares fit,  Equation 6, may also be written 

$ 1  v. = 0 

2 i v i = o  
1 

ik-' vi = O . 
1 

From the summation of Equation 86 we obtain 

N N N c Ei = c vi - c (Yi -yi ,  
1 1 1 

or, using Equation 87, 

and, by squaring Equation 86 before the summation, 

N N c €: = c v: - 2.2 vi (Yi - - Yi) t 2 (Yi - y i y  . 
1 1 1 1 

If we assume that Y i  is generated by a polynomial 

Yi = a. t a l i  t + akel i k - 1  

of degree k - 1 or lower, then 

and hence, from Equation 87, 

- 2 vi (Yi - yi) = 0 
1 
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a d  Eqcation 90 reduces to 

In Appendix F it is shown that 

i f  the e i  a re  uncorrelated. 

Hence 

N N 

if the E are  uncorrelated and if y is a polynomial of equal o r  lower degree than Yi 

The Maximum Error in a Polynomial Fit 

An interesting question is: What e r ro r  function e i  produces the largest e r ror  in yi if the 
e r rors  a re  subject to the side condition 

2 e f = N T 2 ,  
1 

where 7 is a constant? 

Equation 12 may be written 

Using the method of Lagrange's multipliers, we obtain for the maximization of A?, 



Hence 

c1 t ~ A E ,  = 0 

c2 t 2 X E 2  = 0 

c .  t 2 x . 5 .  = 0 

and 

C .  

1 '  
E .  - . L E  

c1 

Thus, from Equation 96, 

or 

and 

C j  fi r 
E .  = t 

1 -  m 
From Equation 97, 

But 

and, using Appendix C, Equation C10, 

2 p = -  I A l  

(1V' 

O i A  i I  
1 

I C 2  J N  = -  / A I 2  [pi(u)  + 3P:(u) t . . t (2k - 1) Pt-l (u)] . 
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Thus 

where 

u + l  
2 

i = N -  . 

Comparing this result with Equation 17, we see that with T = C T ~  the maximum e r ro r  OFimex is fi 
times larger than T~ for uncorrelated noise. 

The e r ro r  function is given by Equation 101, which also may be written 

where i is the point at which A v i  is maximized. 

GENERALIZATIONS 

The polynomial in Equation 4 may be written 

where k is the number of degrees of freedom. Equation 104 may be generalized to 

j=  1 

where Zi j  a re  function of i and j . In this form Equation 105 includes linearized nonlinear systems 
such as described in Reference 6, Appendix B. The sums of the residuals is 

where the summation in i is taken over the N measured values y i  . 
25 



The conditions for a minimum are  

C l l  c,, * z y i z i ,  * * * cui 

c2 1 c,, * * z y i z i ,  * * ‘ ‘2, 

1 
a. = - . ,  

IC1 

‘k 1 c,, * - Z y ,  Zik ‘k k 

or 

IC1 = 

where v takes the integer values from 1 to k. The sums a re  interchangeable, and Equation 107 may 
be written 

c,, - ‘1, 

- 

c,, * * ‘k k 

where 

N 

c .  UJ = c .  J V  = Zij  ziu 
i =1 

Solving for aj  yields 

where 
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haeriioii iii Equation 105 yields 

o r  

I ‘kl c,, * * * Z i k  . c,,I 

0 Z i  1 z;, * * ’ ‘ik 

‘rk ‘k 1 c,, * * * ‘kk 

where the summation index r is identical with the previously used summation index i.  In Equa- 
tion 111 we recognize the generalized form of Equation 8. In analogy to Equation 10, the brief 
notation 

is introduced. 

For uncorrelated noise with standard deviation D E ,  we obtain the standard deviation T~ of the 
estimate yi : 

which is the generalized form of Equation 14. 

For the rms  standard deviation 5, defined by 
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we obtain 

or  

0 zi 

Zi c 

This equation is identical with Equation 23, which thus holds true for the generalized case. 

We have found that Equations 8, 14, and 23 hold true for the generalized case. In particular, 
they hold true for polynomials fitted to unequally spaced data. It should be pointed out that no ap- 
proximations have been made in the derivation of these equations; they a re  exact. 

The generalization of the equations for correlated data is unfortunately not possible, one of 
the reasons being that p i  is not defined for unequally spaced data. 
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Appendix A 

J'j 
Derivation of Ti = - 

j = l  

From the Equations 7, where all summations a re  from 1 to N 

a, Z j 0  t al  Z j l  + . . . + ak-l jk-1 = 2 joy .  

a, Z j l  + al Z j *  + . . . +ak-l Z jk = Z j y j  

Yj I 
2 jZk-2 = 2 jk-1 a. I jk-l t a l  Z jk t - t ak-l 

we can solve for the coefficients a,. With 

N 

A , =  jv 
j =1 

we obtain 

where 



~ 

Thus 

%-1 
A, . . .  

but 

By rewriting all the determinants with the sums in the first column we obtain 

- - 1  
Y .  = - 
' I A l  

(A51 

I Expanding the determinant after the first column reveals that the summation may be moved 
outside the determinant. y j  is a common factor in the first column and may also be moved 
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outside the determinant. Thus 

N 

y.  = - 
-1 I A l  - l  c j = l  

or, with shorter notations, 

0 

1 

1 

j k-1 

A, A,. - A k  
. .  
. .  
. .  

A, A~ . .A , , - ,  

. Y j  
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The Summation o f  

Writing out the determinant in more detail, w e  have 

o i 2  

from the rule that 

0 1 i i2 . . .  
1 A, A, A, . . . 
j 1  A, A, A, .  - 
j z  A, A, A, .  . . 
. .  . .  
. .  . .  
. .  . .  

2 

j = 1  

bo b, b, * 

b, b, b, . . * 

b, b, b, * * * 

. . .  

. . .  

. . .  

0 

0 1 i  . . .  
1 

j A  

- 

0 1 i . . .  

j z  

j 3  A 

Z bo b, b, * . * 

Z b, b, b, . . . 
Z b, b, b, . . . 

. .  

. .  

. .  

1 i . . .  

A, A, . . . 

A, A , .  . . 

A, A , .  . . 

. .  

. .  

. .  



If the summation variable only Occurs in a row o r  a column, the summation over the whole deter- 
minant may be replaced by summation of the elements of the row o r  column, thus: 

0 1 i . . .  

A, A, A, . * 

A, A, A, . . . 
. . .  
. . .  
. . .  
0 1 i . . .  

A, A,, A, * . * 

A, A, A, * . 
. . .  
. . .  
. . .  

2 ,=1 

A, 

A, 

1 bo b , . . .  

j b, b , .  . .  

j 2  b, b, . . . 
. . .  
. . .  
. . .  

Z j o  bo b, . . . 
Z j  b, b, . . .  

Z j z  b, b, . . 
. .  
. .  
. .  

This is easily verified by expansion into minors. 

By applying this rule twice and observing that by definition 

we obtain 

0 1 

0 1 i . . .  

A, A, A, . . 
A, A, A, . * * . . .  
. .  

A, 

i . . .  

A, - * e  

A, . * -  

A , . . .  
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But 

i = l  

0 1 i . . .  

A, A, A, . . . 
A, A, A, . . . . . .  
. . .  
. . .  

i Ai A, A, . . . 
i2 A, A, A, . . . . . . . 

0 1 i . .  . 
A, A, A, . . . 
A, A, A, . . .  
. . .  
. . .  

and so on. Thus 

N 

= -  / A I  , 

Summation over i yields 

O 1 i i’. . .  
1 A, A, A, . . . 

I : : : :  
1 A, A , . . .  

i A, A , . . .  

iz A, A, 
. . .  
. . .  
. . .  

A, A,, A, . . . 
A, A, A, . . . 
A, A, A, . . . . . .  . . .  
. . .  

0 1 i . . .  

- / A /  A, A, . . . 
- I A l  i A, A, . . . 
- I A l  i 2  A, A , .  . . 

. .  

. .  

. .  

i A,, A , .  . .  
iz A, A , .  . 
i3 A, A, - 
. . .  
. . .  
. . .  

i = -  / A /  i , 

= -  I A I . 1 0  . 

i2 A, A, . . . 
i3 A, A, . . . 
i4 A, A, . . . 
. . .  
. . .  
. . .  

t . . .  
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- _ -  

A, A, A, . . . 
A, A, A, . . . 
A, A, A, . . . 
. . .  
. . .  
. .  

= - k  / A I  , 

+ 

A, A, A, * * 

A, A, A, . - * 

A, A, A, . . . 
. . .  
. . .  
. . .  

A, A, A, . . . 
A, A, A, . . . 
A, A, A, . . . 
. . .  
. . .  
. . .  

where k is the degree of freedom of the least-squares fitted polynomial. Thus 

+ .  . . 
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Equation 9 defines A,,: 

Evaluation of 
O i  

i A  
for large N. 

It is shown in Reference 3, page 4, that 

and, for large N, 

I AI  

N 

A, = i y  

i = l  

This is the same approximation as 

W+' % z  xvdx=- 
v t l  

(9) 

The error introduced in /AI  by this approximation is of magnitude N - 2 .  By subtracting rows and 
columns in a suitable fashion, the N,, term may be eliminated: 

r o w  p 

r o w  p + 1 
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I 

Subtract p/2 times row p from row p + 1. Thereafter, subtract d / 2  times column 4 from column 
4 + 1. The element of row p + 1 and column d + 1 of 1Al is then 

N d + p + l  
= - + terms of order N d t P - l  and lower. 

d t P + l  

The error introduced by the approximation is thus of order N - 2 .  With the above approximation, 

( p  ;I = 

0 1 i . . .  i k - 1  

N 2  Nk 1 N - . . . -  
2 k 

N N3 N k t l  
i -  - . . .- 

2 3  k t l  

~ k ~ + l  

0 1 x . . .  X k - l  

1 1 1 . . . -  
k t l  2 3  

x - -  

1 1  1 
Xk-1 - - . . . - 

k k t l  2k - 1 

where x = ifl. For more rapid evaluation of the determinant, we make the substitution 

and observe that 

1 1 - . . .  
2 

1 1 
2 3  

- . . .  - 

1 1  
3 4  

- . . .  - 
1 -- 

2 k 2 - k  

Uk-l  0 1 u u* e . .  

1 1 1 0 9 * e *  

. .  . 

. .  . 

. .  . 

U k - l  
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This result may be verified by su5tracting rows mcl cckmns in a suitable fashion. For 1 A !  we have 

IAl = 

N - N2 . . . -  Nk 

2 k 

N k  Nk+l N 2k-1  - - . . . -  
k k + l  2 k -  1 

2 
: Nk 

1 1 
2 ' * .  - k 1 -  

1 . . . -  1 1  
T 5  k + l  . .  
. .  
. .  

- 1 1  - . . . -  1 
k k + l  2k - 1 

From Reference 7, pages 429 to 431, we obtain 

Combining Equations C4, C5 and C7, we obtain 

IP a1 
IAl 

k! (k + l ) !  . . . (2k - I ) !  

N * 2 k ( k - 1 )  [2! 3! . . . (k - 1 ) ! ] 3  

0 1 u . . .  Uk-l 

1 l o . . .  

u 1 1. . .  
3 . .  

, .  
. .  

,k-1 

By subtracting the second column from the other columns we obtain 

0 1 u u 2 . .  . 
1 
3 

1 1 0 - 0 . .  

1 u 0 - 0  . . .  
3 

1 1 
3 

u2 - 0 s .  . .  
. . . .  
. . . .  
. . . .  

1 
3 

- 1  1 u u 2 - -  . . .  
0 1 0 0 * e .  

u 0 -  1 0 . . .  
3 

. .  

. .  

. .  

and the order of the determinant is reduced by 1. 
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Repeating the process, we obtain 

35u4  - 30u3 + 3)’ + 11 ( 6 3 ~ ’  - You3 t 15,). + . . 1 . 
+ 9 (  8 8 

The polynomials in the squared parenthesis are the Legendre polynomials; thus 

O i  
- l i  A ’  - - -- I (u) + 3P: (u) + . . . + (2k - 1) P:-l (u)] , 

IA l  

where 

u t 1  
2 

i = N -  . 
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Appendix D 

Evaluation of Ti for Correlated Data 

From Equation 27, 

With the substitution 4 = j t v  we obtain 
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I o  1 4 - u  ( 4 - u ) Z  . . . I  

A, . . .  
A, . . .  
A, . . . 

1 

4 
$2 A 

N 

- u 2 c  

.e= 1 

t 

t 2 u T  
Ll 

0 0 -u - 2 u 4 t u 2  . . .  
1 A0 A1 A2 

.e A, A, A3 

4, A, A, A4 

.e A, 
A, 

4, A, 
. * 

. .  

. .  

The summation of the first determinant is given by Equation B4. The second d 

panded in minors after the first row: 

I 0 0 -u - 2 v $ + v 2 . .  . 
1 A, A, A, 

4 A1 A, A, 

4’ A, A, A4 . . .  
. . .  
. . .  

A, A, A, . * * 

A, A, A, . . . 

A, A, A4 . . . 
. . .  
. . .  
. . .  

t 2 v  

A, A, A , * * *  

A, A, A, . * * 

A, A, A, - * * . . .  
e . .  . . -  

1 A, A;.. 

4 A, A , . . .  

4, A, A, . 
. .  
. .  
. .  

J 
:erminant is ex- 

+ . . .  

A, A, A, . . . 
A, A, A, * * * 

A, A, A, . * * . . .  
. . .  
, . .  

+ . .  . = o  , (D3) 



because two columns are identical in each determinant. In the same iiiiliiier we may verify that all 
the other minors are zero. Hence 

For the second term in Equation D1 we obtain 

N u  

Expansion in minors of A yields 

observing that Ai,  = A,,  , where A,, are the minors of I A l  . With the approximation Av = NUt1/u + 1, 
we find in the same manner as in Equation C6 that 

A,, is of o r d e r  k 2 - 1  i n  N 

A 1 2  , A 2 ,  a r e  of o rde r  k2 - 2 in N 

A 1 3 ,  A Z 2 ,  A3,  a r e  of o r d e r  k2 - 3 i n  N . 

Thus, taking the dominating terms only, 
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1 1 1 I 
1 k t 1  k t 2  k t 3  2 k -  1 
.. - . . .  - 

A 

With the approximation Au = NUt1/u t 1 we have 

1 1 1 
3 4 5 

- - - 1 
k t l  

. . . -  

1 
k t 2  

* . .  - 1 1 1 
4 5 6 

- - - 

1 1 1 
5 6 7 

- - - 1 
k t 3  

. . .  - 
2 A = N k -  

11 

The rows are multiplied by factors so that 1's are  obtained in the last column: 

1 1 . . . . -  - 
3 k t l  

k + l  . - 
3 

k t l  - 1  
k 

k!  
(2k - l ) !  

- 

1 1 2 k - 1  . ~rn 2k - 1 - 1  
2k - 2 

. .  

and, by subtracting the bottom row from the other rows, 

O /  

(k-2) '  ( k - 2 ) ( k - 3 )  . . .  k - 2  

30 4(k i 2) k(2k - 2) 

(k - 2) (k - 3) 
4(k t 1) 

(k - 3)' 
5(k t 2) 

0 k -3  
(k t 1)(2k - 2) 

1 1 . . .  k+l - 
3 

- k !  
(2k - l)! 

I & . . .  2k - 1 2k - 2 
k(k t 1) 

. . . . . . . . . . .  0 1 
(2k -3)(2k - 2 )  

. .  

2k - 1 . . . . . . . . . .  I T  1 2k - 1 
2k - 2 
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Taking out comnim factors, 

1 1 
k t l  2 k  - 1 
-. . . - 

[(k - 2)! k !  l 2  - 
(2k - 2) ! (2k - 1)  ! 

1 1 
3 k 
_ . . . .  - 

1 1 
k 2k - 3 
- . . . . -  

Successive application of this recurrence formula yields (see also Reference 8), 

1 1 
3 k t l  
- . . . . -  

1 1 
k t l  2k - 1 
- . . . . -  

[ 2 ! 3 ! * .  ( k - 2 ) ! I 3  ( k - l ) ( k ! ) 2  
k ! (k  + l ) !  * * - (2k - 1) ! 

or,  using Equations C7, D8, and D10, 

k2 All = -  \ A I  
N 

With the same procedure it may be shown that 

A -44, = g ( k )  I A l  , 
I N3 2 2  

where g(k)  is a function of k alone. We thus obtain, in decreasing degree of N, 

o r  



Appendix E 

The Autocorrelation Function of Range Rate 

It is shown in Reference 8 that the Doppler count &$ may be written 

4 = +(t + h + T p )  - +(t + h )  - [+( t  + T p ) - + ( t ) l  , 

where 

4 = phase difference, measured by Doppler count 

t = reference time 

h = sampling interval 

TP = two-way propagation time 

+( t ) = phase transmitted at time t . 
We consider the case where the phase is contaminated by a random-walk phase noise 4Rw. The 

standard deviation o of the noise accumulated during a time interval AT is 
+R W 

where k, is a constant. 

We consider the case where the two-way propagation time is larger than the sampling 
interval h: 

T p > h .  

This situation is shown in Figure El. The 
standard deviation uA+ of the Doppler count 
is then, according to Equation El, 

RW 

q ( t + h + T p  

2 -  2 
- E[+,, ( t + h + T p ) - + R W ( t + T p ) l  

uAOQRW d t+ Tp 

- E[& ( t + h ) - & w ( t ) I 2  +( t+h  

Q( t and, using Equation E2, 

(E 3) 
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t t+h  t + T p  t + h + T p  

Figure E 1 -Phase vs. time for h < TP . 



$ ( t + h + T , )  -_ -- 

. + ( t + h )  ------_ 
e( t + T o )  ------ 

t t + t p  t + h  t + h + T p  

Figure EP-Phase vs. time for TP 5 h. 

If, on the other hand, TP 2 h ,  we obtain 
from Figure E2: 

2 
m&Rw = E[$Rw ( t + h + T p ) - + R W ( t  t h ) ]  

o r  

The standard deviation uAb 

count &(nh) over n sampling intervals is ob- 
tained from Equations E3 and E4 and is shown 
in Figure E3 as a function of n .  The two-way 
propagation delay is 

for the Doppler 
R W  

where 

p = integer 

O'X<l 

h = sampling interval. 

For the time interval 2h, we obtain from Equation E3: 

(E6) = E{&Rw (2h)  >' = 4 k: h . 2 

u*dRW 

But we can also consider the interval 2h as two intervals h + h. If p1  is the correlation coefficient 
between these intervals, then 

(E71 
2 2 

E { M R W ( 2 h ) )  = E { M R W ( h ) )  ( 1 + 1 + 2 p l )  = 4 k : ( l + p l ) h  . 

Comparing Equations E6 and E7, we find: 

P1 = 0 
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In the sarr,e marner 

Pp-l = 0 I 

where 

p, = correlation coefficient between samples which are v sampling intervals apart. 

Consider now p + 1 sampling intervals. By summing p + 1 intervals, we obtain 

2 
E{&,, [ ( p + l ) h I }  2 k i ( p + l + 2 p p ) h  

From Figure 12 and Equation E5, we also obtain 

and hence 

- 1 - x  
p p - - - .  2 

For p + 2 sampling intervals, we obtain in the same manner 

and thus 

X 
Pptl  = - -31 

For p + 3 sampling intervals, we obtain 

or 

Ppt2  = 0 . 



In the same manner, 

If AR is the change in range during the sampling i n t e n d  h, we may write the (average) range 
rate R: 

where AR is proportional to W .  The correlation coefficients or normalized autocorrelation functions 
for R are thus the same as for &. See also References 9 and 10. 
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Appendix F 
N 

- The Evaluation of (y j  - y j  12 
1 

From Equations 10 and 83, 

y. =Y. + E .  
1 J J '  

we obtain 

It may be shown that 

N 

if Y i  is of equal or lower degree than Ti. This result is self-evident because yi = Yi if all c i  = 0, 
or may be derived by evaluating the sum in the same manner as in Appendix A. We thus obtain 

and 
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where 

= 

o Z c j  Z j E j  Z j 2 e j * * -  

1 A,, A, A, - 0 .  

i A, A, A, - . -  

i2 A, A, A4 ' 9 .  

. .  

. .  

. .  

Summing over i gives 

f Z j  e j  

Z E ~  A. A, 

t j e j  A, A, 

. .  

. .  

. .  

- .  . 

Multiplying the sums into the determinants results in elements of the form Z j p  e j  Zjq e j  . If the 
data is uncorrelated, then 

and thus, with r = p + q, 

N N N 

for large N. Furthermore, 

N 2 j r E 2  I N  = ~ ~ j r  j - 1  
j=1  =$E€? j =1 , 

(F7) 
j = 1  

which may be shown by induction by going from N to N + 1 and is obviously true for N = 1. 
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Equation F4 is thus reduced to 

and hence 

N N 

(Yi - - y i ) 2  = "C €j! . 
N 

i s 1  j = 1  
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In the same manner, 

p , = O f o r  n ? p + 2 .  ( F15) 

If AR is the change in range during the sampling interval h, we may write the (average) range 
rate R: 

where & is proportional to 9. The correlation coefficients o r  normalized autocorrelation functions 
for R are thus the same as for &. See also References 9 and 10. 
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